Yo-Yo Attack - Vulnerability in auto-scaling mechanism
Mor Sides 1 Anat Bremler-Barr 1 Elisha Rosensweig 2
1Interdisciplinary Center, Herzliya
2Cloudband, Alcatel-Lucent

Background: Auto-Scaling Mechanism
► Auto-scaling enables adapting the number of application machines automatically to support changes in user load.
► A scaling policy to guide auto-scaling is defined by the application owner. It commonly consists of a scaling criteria (function) and corresponding thresholds for overload and underload.

Vulnerability in auto-scaling mechanism
► Auto-scaling mechanism can provide protection from many basic Distributed Denial of Service (DDoS) attacks, with the virtually-unlimited resources of a cloud available.
► However, it also opens the door to a new type of attack - the Economic Denial of Sustainability (EDoS) attack, where the application owner pays large sums for virtual machines that yield negligible gains.
► Here we present the 'Yo-Yo attack', an instance of EDoS attack targeting the auto-scaling mechanism, which is difficult to detect while causing economic damage and also performance damage.

Yo-Yo Attack
► Yo-Yo attack cycles between two phases repeatedly:
 ▶ On-attack: the attacker sends a short burst of traffic that causes the auto-scaling mechanism to perform a scale up.
 ▶ Off-attack: the attacker stops sending the excess traffic (after identifies that the scale up has occurred) that causes the auto-scaling mechanism to perform a scale down.
► The Yo-Yo attack can also be considered a Reduction of Quality (RoQ) attack. RoQ attacks aim to keep an adaptive mechanism oscillating between over-load and under-load conditions, which in the Yo-Yo attack triggers scale-up and scale-down processes repeatedly.

Detecting Scale Up
► The key idea is that scale is done usually in order to improve the response time, thus the response time reveals some information on the state of the auto-scaling mechanism.

Evaluate the power of the attack
► Attack cost: The factor between off-attack to on-attack is almost 3.5, i.e. reducing the attack cost in about 77%.
► The attacker would be interested in maximizing the damage per unit cost, denoted as potency.
 ▶ potency = m/t, where:
 ▶ m: the averaged number of extra machines.
 ▶ t: the ratio of on-attack duration to the entire attack duration.
► In a full DDoS attack the potency is 1, while in our experiment, Yo-Yo attack, the potency is 0.71/0.23 which is 3.08. Thus the attacker is 3 time more effective.

Estimations on Larger Services

Future Work
► Future work will focus on:
 ▶ Execute the attack on more environments, statefull services and middleboxes.
 ▶ Ways to mitigate the attack.

Acknowledgments
► This research was supported by European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement No259085.