Accelerating Regular Expression Matching Over Compressed HTTP

Michela Becchi*, Anat Bremler-Barr†, David Hay‡, Omer Kochba§ and Yaron Koral¶

*University of Missouri, Columbia, Email: becchim@missouri.edu
†The Interdisciplinary Center Herzliya, Israel, Email: bremler@idc.ac.il
‡The Hebrew University Jerusalem, Israel, Email: dhay@cs.huji.ac.il
§The Interdisciplinary Center Herzliya, Israel, Email: kochba.omer@idc.ac.il
¶The Hebrew University Jerusalem, Israel, Email: yaronkoral@gmail.com

Abstract—This paper focuses on regular expression matching over compressed traffic. The need for such matching arises from two independent trends. First, the volume and share of compressed HTTP traffic is constantly increasing. Second, due to their superior expressibility, current Deep Packet Inspection engines use regular expressions more and more frequently.

We present an algorithmic framework to accelerate such matching, taking advantage of information gathered when the traffic was initially compressed. HTTP compression is typically performed through the GZIP protocol, which uses back-references to repeated strings. Our algorithm is based on calculating (for every byte) the minimum number of (previous) bytes that can be part of a future regular expression matching. When inspecting a back-reference, only these bytes should be taken into account, thus enabling one to skip repeated strings almost entirely without missing a match. We show that our generic framework works with either NFA-based or DFA-based implementations and gains performance boosts of more than 70%. Moreover, it can be readily adapted to most existing regular expression matching algorithms, which usually are based either on NFA, DFA or combinations of the two. Finally, we discuss other applications in which calculating the number of relevant bytes becomes handy, even when the traffic is not compressed.

I. INTRODUCTION

Deep packet inspection (DPI) is a crucial component in many of today’s networking applications, such as security, traffic shaping, and content filtering. It is considered a system performance bottleneck, since it inspects the packets’ payload in addition to their header. Recently, especially due to the proliferation of mobile devices with limited bandwidth, DPI components have had to deal also with compressed traffic. This adds an additional performance penalty of data decompression prior to inspection. Finding an efficient solution is crucial as nowadays the majority of Web-sites uses compression. HTTP compression is typically done with the GZIP protocol, which uses pointers to repeated strings within the traffic. Current literature focuses on DPI over compressed traffic for patterns that consist of strings. However, contemporary DPI engines are required to support also regular expressions.

This paper aims at providing a generic solution to accelerate any regular expression matching on compressed traffic. As such, it applies to a wide range of methods for regular expression matching over plain-text (namely, uncompressed) traffic. The inspection is accelerated by avoiding scanning repeated strings within the input text (namely, the strings represented as pointers in GZIP), which were in a sense “already scanned”. Extra care is taken to detect and handle delicate cases where the regular expression matches consecutive repeated and non-repeated strings (e.g., a pattern prefix followed by a pointer to a repeated string). DPI algorithms rely mostly on finite automata. In case of string matching, every state within the automaton corresponds to a single string. Therefore, storing the information about the previously traversed states is sufficient to determine the amount of bytes of the input text that may be safely skipped when encountering a pointer within a compressed input (as discussed in Section II). In case of regular expressions, every state may represent a wide set of strings with various lengths, as in the presence of the ‘*’ operator. For instance, given the pattern ‘ab+c’, the input strings ‘abc’ and ‘abbbbc’ cannot be distinguished based on the information of the automaton state alone as both input strings’ scans lead to the same state. To overcome this problem, we provide an algorithm that evaluates a new parameter called Input-Depth, which relates to the length of the input shortest suffix that leads to the current state from the automaton’s root.

We provide an algorithmic framework called Acceleration of Regular expression matching over Compressed HTTP (ARCH), which uses the Input-Depth parameter. We derive two system designs from this framework with respect to the two distinct DPI approaches, namely: two phase inspection — string based pre-filtering accompanied by an NFA scan for regular expression matching, and a single pass inspection — DFA-based regular expression matching. Our experiments show that the first design, denoted by ARCH-NFA, skips up to 79% of the inspected traffic and thus gains more than 4.8 times performance boost with respect to the second phase of regular expression matching. This design has a significant practical importance as it relates to the architecture used by the popular Snort IPS [2]. Our second system design, denoted by ARCH-DFA, also skips up to 79% of the inspected traffic and gains more than 3.4 times performance boost for moderate size pattern sets. Next we show how ARCH applies to large pattern sets that require a multi-DFA design to avoid state-space explosion. This design maintains almost the same average skip ratio of 78% and gains a performance boost of 3.3 times.

1A recent report from July 2014 shows that over 57.8% of the Internet Web sites use HTTP compression. When looking at the top 1000 most popular sites, over 83% of them use HTTP compression [1].
This paper makes the following contributions:

1) A study of the challenges of regular expression matching over compressed traffic.
2) A new method to allow the extraction of entire matched sub-strings for automata-based matching.
3) The first algorithmic framework that accelerates regular expression matching over compressed traffic.
4) Two architectural designs that achieve a significant performance improvement over traditional regular expression matching.

II. BACKGROUND

A. Compressed HTTP

Compressed HTTP (namely, content coding for HTTP) is a standard method of HTTP 1.1 [3]. The standard describes the following content codings: GZIP, DEFLATE and COMPRESS. Practically, only the former two schemes are used. Since GZIP is a variant of DEFLATE, this paper handles both algorithms in the same way. The GZIP algorithm [4] has two underlying compression techniques: LZ77 and Huffman coding.

1) **LZ77 compression** reduces data size by replacing repeated strings within the last 32KB of uncompressed data by a pointer with (distance, length) format, where *distance* indicates the distance in bytes of the repeated string from the current location and *length* indicates the number of bytes to copy from that point. For example the string: 'abcdefabcx' may be compressed to 'abcdef(6,3)x'.

2) **Huffman coding** further reduces the data size by assigning variable-size code-words for **symbols**, thus enabling to encode frequent symbols with fewer bits.

GZIP compression first compresses the data using LZ77 compression and then encodes the literals and pointers using Huffman coding. Specifically, the algorithm in this paper is based on the characteristics of the LZ77 compression.

B. Deep Packet Inspection Algorithms

DPI involves processing of the packet payload to identify occurrences of a set of predefined patterns. These patterns are expressed as either string or regular expressions. Early network IPSs relied solely on string matching, which is usually based on some variant of the Aho-Corasick [5] algorithm. This method uses a DFA to recognize multiple string signatures in a single pass and its running time is deterministic and linear in the input size.

Over the last years, security threats have become more sophisticated and required complex signatures, which can no longer be expressed as strings. Therefore, most security tools incorporate a regular expression matching engine. Regular expressions add three operators: concatenation (of two expressions), alternation (OR, ' | ') and Kleene closure ('* ' or '+ ') and are defined recursively over them [6]. Such engines are typically implemented using either a DFA or an NFA.

DFAs scan the input in linear time, but use huge amount of memory due to the infamous state-space explosion problem. Approaches to tackle this problem include keeping cache of recently visited states [7], adding instructions to automaton edges [8], using edge compression techniques [9], [10], and using multiple DFAs [11] where only some are activated [12]. Our ARCH-DFA solution is based on A-DFA [10] and our design for large pattern sets is inspired by Hybrid-FA [12].

NFAs, on the other hand, use linear space but have worst-case quadratic time complexity [6], which may be exploited by an adversary for denial-of-service attack (DoS) on the DPI element itself [13], [14]. In NFAs, upon inspecting a symbol *b* in a current state *s*, one may need to transit to multiple next states (namely, by traversing all the outgoing edges of state *s* with label *b*). A common implementation maintains a set of active states *S*; for each input byte *b* this set is recomputed by traversing all *b*-labeled edges from every state *s* ∈ *S*.

In practice, security tools with a large rule-set such as Snort [2], use a pre-filter based solutions. The pre-filter performs string matching on extracted strings from the regular expressions. When all strings of a specific rule match, a regular expression scan is invoked using an NFA. The pre-filter can be accelerated over compressed traffic based on prior solutions for string matching (as described in the sequel), while the NFA part can be accelerated using our ARCH-NFA solution.

C. String Matching Over Compressed Traffic

LZ77 is an adaptive compression as each symbol is determined dynamically by the data. Therefore, there is no way to perform DPI without decompressing the data first [15]. Since decompression is a fairly inexpensive process, the real challenge is to optimize the scanning of the decompressed data. The idea behind the acceleration algorithm is to use the information gathered by the decompression phase to skip scanning significant parts of the data. An LZ77 pointer represents a repeated string that was already scanned. Therefore, it is possible to skip scanning most of the it without missing any pattern. Still, tracking previous matches does not suffice due to cases where a pattern crosses a border of a repeated string. For example, given a pattern ‘nbc’ and an input string ‘abcdnbxnc(7,5)c’, while no match occurs at the repeated string ’bcdnb’, there are matches occurring on both its left and right borders.

This problem is tackled by the DFA-based ACCH algorithm [15], which is limited to string matching. Upon encountering a repeated string it works as follows:

1) Scan the **left border** of the repeated string and update scan results.
2) Check whether the previous scan results of the repeated string contain matches.
3) Scan the **right border** of the repeated string and update scan results.
4) Update estimated scan results of skipped bytes within the repeated string.

In ACCH, scan results of previous bytes are stored in a 32K-entries **Status-Vector**. Its values are determined by **DFA-Depth(s)** — the length of the shortest path from root to state *s*. There are three possible status values:

- **MATCH:** a pattern was matched (the match ends in the scanned byte).
• UNCHECK: $DFA-Depth(s)$ is below a threshold parameter $CDepth$ (in practice, $CDepth$ is set to 2).

• CHECK: otherwise.

ACCH uses the Status-Vector in the following manner:

Left Border Scan — Upon processing a repeated string, ACCH scans j bytes until reaching a state s where $j \geq DFA-Depth(s)$. From this point on, any pattern prefix is already included in the repeated string area. We refer to the first j bytes of the repeated string as the left border of the pointer.

Repeated Pattern Detection — This procedure examines the corresponding Status-Vector values of the referred string, starting at its $(j+1)$th byte. If some byte at position m has a MATCH value, ACCH checks the length of that previously matched string. If it is m or more then the previously matched string was not repeated entirely. Otherwise, ACCH reports a matched pattern as in the referred string and marks that byte by a MATCH status.

Right Border Detection — ACCH determines the position to start inspection again such that no pattern (whose prefix is part of the repeated string suffix) is missed. This is done by estimating the $DFA-Depth$ of the repeated string’s last byte (say this estimation is d) and scanning (from s_0) the last d bytes of the repeated string.

Update Status of Skipped Bytes — Skipped bytes cannot obtain their status from the scan procedure. Therefore, ACCH copies the status value for the skipped bytes from the corresponding referred string. Note that since ACCH skips only after it ensures that there is no pattern whose prefix started prior to the repeated string, the value of the estimated $DFA-Depth$ could be only equal or greater than its actual value (namely, setting a byte as CHECK while it should be UNCHECK). Such a mistake leads to minor reduction in the amount of skipped bytes but never to a miss-detection.

III. RELATED WORK

HTTP compression is a very popular method in the Internet. There are many works (e.g., [16]–[18]) that suggest acceleration of the compression method itself to support high request volume from high-end servers. These papers support the compression layer of the data without referring to the context of processing the data itself as in the case of DPI.

As noted in Section II, HTTP compression uses LZ77 compression. There are various works in the literature regarding pattern matching methods over the Lempel-Ziv compression family [19]–[22]. However, the LZW/LZ78 variants are more attractive and simple for pattern matching than LZ77, thus all the above proposals are not applicable to our case. Klein and Shapira [23] suggested a modification to the LZ77 compression to simplify matching in files. However, their suggestion is not implemented in today’s Web traffic. Farach et. al [24] deal with pattern matching over LZ77. However, their proposed algorithm matches only a single pattern and requires two passes over the compressed text (file), which does not comply with the ‘on-the-fly’ processing requirement of network applications.

The ACCH algorithm [15], discussed in details in Section II, was the first to tackle the problem of multi-pattern matching over compressed HTTP traffic. Following this work, another algorithm, named SPC [25], analyzes the usage of the Wu-Manber pattern matching algorithm [26] instead of the DFA-based Aho-Corasick [5] algorithm that lies at the core of ACCH. SPC provides superior performance results over ACCH in the case of normal traffic while its worst-case performance is very poor. Note that there is no variant of the Wu-Manber algorithm that is applicable to regular expression matching, thus SPC cannot be used in our case. The SOP [27] algorithm minimizes the memory footprint required by the ACCH data structures. It may be combined with our algorithm, with few adaptations, to save space. Finally, Berger and Mortensen [28] provide a hardware scheme for the decompression phase, but do not deal with the scanning of the compressed data itself.

All the above mentioned works are limited to string matching rather than to devices based on regular-expression matching. Sun et al. [29] suggested a method to perform regular expression matching over compressed HTTP. Still that method handles only simple cases, where the DFA is either at its root state or at a state with a direct transition from the root state. Practically, the DPI engine traverses to deeper DFA states. Furthermore, an attacker may easily craft an input that causes the DFA traversal into areas that the algorithm of Sun et al. fails to support. Robustness against such attacks is crucial as IDSs are a preferred target for denial-of-service attacks.

IV. THE ARCH FRAMEWORK

This section presents our framework: Acceleration of Regular expression matching over Compressed HTTP (ARCH). Conceptually, ARCH is based on the same ideas as the ACCH algorithm (as described at Section II-C), which works only for string matching. One of the key insights used in ACCH is that the $DFA-Depth$ of a state represents the longest suffix of the input that can still be part of a (future) match. This property holds for string matches and it greatly simplifies the design of ACCH, as it enables both left- and right-border resolution based solely on the state of the DFA.

Unfortunately, for regular expression matching this property does not hold since a state may represent an input of variable lengths. This happens as a result of an alternation between different-length expressions or a Kleene closure (namely, ‘*’ or ‘+’). An example of a state with an ambiguous depth in the presence of an alternation operator is depicted in Fig. 1, which represents an automaton accepting the pattern ‘(apple|pear)s’. The $DFA-Depth(s_5)$ value is 4 since it is the shortest path length from s_0 to s_5. Therefore, in the case of an input byte sequence of: ‘zpplesxa(7,5)s’, the $DFA-Depth$ after scanning the string ‘apple’ at the repeated string would be 4, while the minimal input suffix that should have been scanned to reach s_5 from root is 5. Wrong $DFA-Depth$ may lead to miss-detection in ACCH.

An example of a state with an ambiguous depth in the presence of a Kleene closure is demonstrated in Fig. 2. The DFA is for ‘ab+c+’ and an input of ‘babbabbcxa(8,7)’ for which the repeated string is ‘bbbbbabc’. The repeated string scan starts at s_1. After scanning two ‘b’ characters the automaton is still at s_2, hence the $DFA-Depth(s_2)$ does not change and is still 2. Thus, the left border detection of ACCH would have been completed at this point, skipping the
rest of the repeated string and resuming the scan at the right border. This, of course, leads to a miss-detection, which is unacceptable.

Therefore, a key challenge behind ARCH is to calculate the minimum number of (previous) bytes that can be part of a future regular expression matching. This number is captured by the Input-Depth parameter, which is defined precisely below. It is important to notice that unlike ACCH’s DFA-Depth, Input-Depth depends both on the automaton state and the inspected byte.

Definition 1. For a given automaton, let \(s_0 \) be the start state and \(s \) be the current state after scanning input text \(X \) with the automaton. Let \(\text{Input-Depth}(X,s) \) be the length of the shortest suffix of \(X \) in which inspection starting at \(s_0 \) ends at \(s \).

We note that in the case of string matching, Input-Depth equals DFA-Depth. In fact, the ARCH framework uses the ACCH algorithm to calculate possible scan skipping by replacing the DFA-Depth parameter with the Input-Depth parameter along with specific implementations for the different setups, as described in the sequel. Thus, if there is no match, the Status-Vector value CHECK is determined according to whether Input-Depth is greater than CDepth and, if not, the value is UNCHECK. The calculation of Input-Depth is done differently in NFA-based and DFA-based implementations, where in the former the value can be calculated precisely, while in the latter it can only be estimated. In the next sections, we will discuss these calculations and estimations as well as the correctness of the ARCH algorithm in detail.

V. **Input-Depth Calculation for NFA-Based Implementations**

Recall that one possibility to provide regular expression matching is to use NFAs, which are usually compact but slow data structures. We start our discussion with such implementations as they are simpler and help to grasp a better understanding of ARCH (DFA-based Implementations pose extra complications on top of ARCH and are discussed in Section VI). Moreover, NFAs are currently used by the popular Snort IPS, and therefore, accelerating their operations has a merit on its own.

ARCH maintains an Input-Depth value for each active state. Namely, given an input prefix \(Y \), an active state \(s \), an input byte \(b \), and a subsequent active state \(s' \) such that there is a transition between \(s \) and \(s' \) with a label \(b \), the value of Input-Depth(\(Y, s' \)) is set to Input-Depth(\(Y, s \)) + 1. The only exception is at the start state of the NFA (which is always active) and for which Input-Depth(\(Y, s_0 \)) is always zero. Naturally, when ARCH needs to determine the left or right border of a pointer it uses the maximal Input-Depth(\(Y, s \)) where \(s \) belongs to the set of active states. Fig. 3 depicts an NFA for the patterns ‘zabcfg’ and ‘z[^\n]*fg’. The execution of ARCH for input ‘zf
zabcfe’ and the NFA are illustrated in Table I.

VI. Input-Depth Estimation for DFA-Based Implementations

The task of Input-Depth calculation is more challenging when a DFA is used for regular expression matching. This is because, unlike NFA, a DFA transition may result either in increasing the Input-Depth (by one) or decreasing the Input-Depth (by any value). In this section, we provide an upper bound on the Input-Depth using two methods: by simple and complex states and by positive and negative transitions. As a rule, we use the upper bound as the value of the Input-Depth in the ARCH framework. Thus, we take a conservative approach and never miss a match. Yet, the tighter the upper bound is, the higher the skip ratio we achieve.

A. Estimation based on Simple and Complex States

As noted above, Input-Depth cannot be always derived from DFA-Depth. Still, there are cases we can derive it safely. In fact, we could split the DFA states into two kinds:

<table>
<thead>
<tr>
<th>Character</th>
<th>Active States</th>
<th>Input-Depth</th>
<th>Max Input-Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>(s_0), (s_1), (s_7)</td>
<td>0, 1, 1</td>
<td>1</td>
</tr>
<tr>
<td>f</td>
<td>(s_0), (s_7), (s_8)</td>
<td>0, 2, 2</td>
<td>2</td>
</tr>
<tr>
<td>\n</td>
<td>(s_0)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>z</td>
<td>(s_0), (s_1), (s_7)</td>
<td>0, 1, 1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>(s_0), (s_2), (s_7)</td>
<td>0, 2, 2</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>(s_0), (s_3), (s_7)</td>
<td>0, 3, 3</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>(s_0), (s_4), (s_7)</td>
<td>0, 4, 4</td>
<td>4</td>
</tr>
<tr>
<td>f</td>
<td>(s_0), (s_5), (s_7), (s_8)</td>
<td>0, 5, 5, 5</td>
<td>5</td>
</tr>
<tr>
<td>e</td>
<td>(s_0), (s_7), (s_9)</td>
<td>0, 6, 6</td>
<td>6</td>
</tr>
</tbody>
</table>

Example:

- For the input ‘zabcfg’, the Input-Depth is 1, as the first character ‘z’ is matched.
- For the input ‘z[^\n]*fg’, the Input-Depth is 2, as the first character ‘z’ is matched and the next character ‘[^\n]’ is matched.

Fig. 3. NFA of pattern set: ‘zabcfg’, ‘z[^\n]*fg’.
those which represent a fixed string expression (where Input-Depth equals DFA-Depth) and those which represent a set of strings with various lengths. For instance, in the DFA of Fig. 2, states s_0 and s_1 are simple and states s_2 and s_3 are complex. More formally, this is captured in the following definition:

Definition 2. A simple state s is a state for which all possible input strings that upon scan from s_0 terminate at s have the same length. All other states are complex.

Input-Depth estimation by simple and complex states works as follows: upon traversal to a simple state, *Input-Depth* is set to the DFA-Depth of the state; upon traversal to a complex state, *Input-Depth* is incremented by one.

Our algorithm detects simple and complex states based on the DFA construction procedure as described by Thompson [30]. Thompson’s construction has three significant stages: NFA construction from expressions, *ε*-transitions removal, and finally, DFA construction based on the resulting NFA. The basic idea of our algorithm is that we mark simple and complex states during NFA construction, and then we transfer these marks to the final DFA. The NFA construction is defined over the three basic regular expression operators as in Fig. 4. The operands are regular expressions R and S. All states are marked as simple by default and stay that way unless otherwise specified. Complex states are marked according to each regular expression operator as follows:

- **Kleene Closure** (Fig. 4(a)): Mark all states as complex.
- **Alternation** (Fig. 4(b)): If either states r or s are complex, mark state u as complex.
- **Concatenation** (Fig. 4(c)): If state r is complex, mark all states of S as complex.

After the above procedure the following claim holds (the proof is in the appendix):

Claim 1. If a state s is simple then all possible input strings, whose scan from s_0 terminates at s, have the same length.

The simple/complex state marks are transferred through the Thompson construction stage to the final DFA as follows: the *ε*-transition removal stage only removes redundant transitions and states, therefore, all remaining states are still marked. Next, the NFA is transformed into a DFA using the subset-construction method, which traverses the entire NFA and creates a DFA state for each possible set of active states. This DFA state is marked simple if and only if all NFA active states are simple.

B. Estimation based on Positive and Negative Transitions

In this section we present the positive and negative transition technique which relies on the observation that *Input-Depth* depends on the transition between two states rather than only on the state in its endpoints. For example, Fig. 5 shows that the transition from s_x to s_y should increase the *Input-Depth*, the transition between s_x to s_y should leave the *Input-Depth* unchanged, and the transition between s_u to s_y should decrease the *Input-Depth* by 1. This implies that the *Input-Depth* calculation cannot solely depend on s_y.

Fig. 4. The basic operators considered in Thompson’s construction [30].

Fig. 5. DFA for pattern set \{"ac[a-e]*x", "abcd+x", "aabce+x"\}.

Thus, we define two types of transitions: A positive-transition, which increases the Input-Depth by one (e.g. a byte was added to the pattern’s prefix) and a negative-transition, which either decreases or leaves the Input-Depth unchanged. The challenge is to detect negative-transitions and determine the exact change they apply to the *Input-Depth* value.

Negative-transition detection is performed in two stages. In the first stage, for each state we calculate a candidate label, denoted by c-label(s), which helps detecting negative transitions in the second stage. Let $L(s)$ be the set of all input strings that are accepted by s. We choose c-label(s) $\in L(s)$ such that c-label(s).length \leq l(s).length for any $l(s) \in L(s)$. We refer to the second stage of the Thompson construction (as described in Section VI-A), which is the subset-construction that constructs a DFA from an NFA. The c-label(s) parameter is determined by integrating a line into the subset-construction algorithm (as in Alg. 1 Line 8). The algorithm uses the following basic NFA operations:

- ϵ-closure(T) — The set of NFA states reachable from each NFA state s in set T on ϵ-transitions alone.
- move(Ta) — The set of NFA states to which there is a transition on input symbol a from some state s in T.

Basically, the subset-construction algorithm traverses all NFA active state sets (Line 1) using all possible input symbols (Line 3) in a breadth-first search (BFS) manner. Each unique NFA active set T results in a corresponding DFA state t (Line 7). When a transition from the DFA state t results in a DFA state u, which was never visited before, the algorithm creates a c-label(u) by concatenating c-label(t) and the transition label a (Line 8). Note that there may be more transitions that lead to DFA state u along the construction. Still, since BFS is used for the NFA traversal, and the c-label(u) was generated upon the first transition that reaches u, c-label(u) must be no longer than any other label in $L(u)$.

At the second stage, for each state $t \in D$states we iterate over all its transitions and determine whether they are
negative or positive. To this end we define a structure called Anchored-NFA, which is the NFA constructed from all regular expressions from the related DFA after they were anchored; namely, after they were restricted to be matched from the beginning of the input (represented by the `'^' operator in the PCRE [31] package). Each transition \((t, u)\) with label \(a\) is inspected as follows: the algorithm traverses the Anchored-NFA using \(c\text{-label}(t)\) and receives an output of an active states set \(R\) in the Anchored-NFA (Line 2). If there exists an iteration with label \(a\) from \(R\), then transition \((t, u)\) is positive (Lines 4–6). The rest of the transitions are marked as negative. The intuition behind this algorithm is that a negative transition from \(t\) to \(u\) with label \(a\) implies that there is a suffix of \(c\text{-label}(t) \oplus a\) that leads from the root to \(u\). Therefore, a string such as \(c\text{-label}(t) \oplus a\) cannot be accepted by the Anchored-NFA, rather only its suffix. Thus, lack of transition at the Anchored-NFA applies a negative transition at the DFA.

![Algorithm 1: Modified subset construction algorithm. The symbol \(\oplus\) means concatenation.](image)

For example, consider the patterns `ab+c+d` and `bc+e`. The resulting DFA from our modified subset construction is depicted in Fig. 6(a) and its full-matrix representation along with its calculated \(c\text{-label}(s)\) values is depicted at Fig. 6(c). After running Alg. 2 using the DFA and the Anchored-NFA (depicted in Fig. 6(b)) all negative, positive (underline) and loop (circled) transitions are marked. All negative transitions are marked with dashed red arrows in Fig. 6(a). Note that the algorithm distinguishes between the “self-loop” of states \(\{0\}\), \(\{0,1\}\) and \(\{0,5\}\) marked as negative transitions and the “self-loop” of states \(\{0,2,5\}\), \(\{0,3,6\}\) and \(\{0,6\}\), which are marked positive. This is the desired outcome as in the former case \(\text{Input-Depth}\) should not increase upon loop traversal, while in the latter it should.

At this point, each transition of the DFA is marked as either positive or negative. The next step would be to determine the \(\text{Input-Depth}\) upon DFA traversal as described in Alg. 3. The straightforward case is upon a traversal over a positive transition, for which the \(\text{Input-Depth}\) is incremented by one (Line 3). To handle negative transitions we use the classification of simple and complex DFA states as explained in the previous subsection. If a negative transition leads to a simple state, the \(\text{Input-Depth}\) is set to this state’s DFA-Depth (Line 6). Upon a negative transition to a complex state the \(\text{Input-Depth}\) should be decremented by the delta between the labels’ lengths as described at Lines 8–9. We note that this algorithm does not support some corner cases (e.g., when a regular expression contains multiple loops and has a negative transition to another regular expression that contains only some of these loops), thus our algorithm just increments \(\text{Input-Depth}\) by one as it is the maximal possible value. For that matter ARCH always provides an upper bound on the value of \(\text{Input-Depth}\), and therefore, never misses a match.

![Algorithm 3: ARCH-DFA Input-Depth Maintenance.](image)

VII. FROM THEORY TO PRACTICE: ARCH-DFA SYSTEM ARCHITECTURE

Observe that the problematic case of ARCH is where the algorithm cannot skip any bytes. This case may happen upon a closure operator over a wide range of characters (such as `*`, `+`), which causes its following states to be complex and have only positive transitions, hence the \(\text{Input-Depth}\) never decreases. For instance, consider the pattern `AdminServlet.*(userid|adminurl)` (which was extracted from Snort’s rule set); after matching the prefix `AdminServlet`, \(\text{Input-Depth}\) cannot decrease since any character can be part of the pattern and may be followed by either `userid` or `adminurl`. Thus, ARCH cannot skip scanning characters in such cases as it never finds the left border of a pointer (see Section II-C). This implies that whenever a closure operator acts upon a wide range of characters, the effectiveness of ARCH reduces. In some cases, the benefit of ARCH becomes smaller than its overhead. In such cases we would like to just run a regular DFA rather than ARCH-DFA to avoid the ARCH-DFA overhead, which is approximately 11% (see details in Section VIII) due to additional memory.
accesses to the status-vector. We note that only 8.1% of the rules in the set that was derived from Snort and fits compressed Web traffic (i.e. Web traffic from server to client) contains ‘, *’ expressions. A more frequent wide-range Kleene closure is of the form ‘[^
]*’. Still, since we deal with HTML data, the new-line occurs on average after 75 characters, and therefore, the automaton “escapes” the above-mentioned case of only positive transitions, and therefore, does not harm much the ARCH performance, as described in Section VIII. Additionally, when Input-Depth increases along scanning, ARCH never detects a pointer’s left border, implying status vector checkups are redundant. We note that nowadays, the incurred overhead in the above-mentioned case is practically negligible, however, future pattern sets or implementations might be different.

A design that ARCH may benefit from is the Hybrid-FA of Becchi et al. [12]. Inspired by this design, ARCH system breaks the regular expressions into a prefix set of all expressions, which are represented by a single prefix ARCH-DFA (which is analogous to the head-DFA in [12]), and a set of tail ARCH-DFAs which represent the entire regular expressions set. The prefix ARCH-DFA is always active, while only a small part of the tail ARCH-DFAs may be active. This way the resulting hybrid automaton has a small memory footprint as compared to the corresponding DFA, with the penalty of traversing several automata in parallel. Using the above-mentioned architecture leaves us the freedom to decide in advance whether to use a tail ARCH-DFA or a tail DFA in the case where the overhead of ARCH is higher than its benefits as depicted in Fig. 7.

VIII. EXPERIMENTAL RESULTS

We evaluate the performance benefits of ARCH on rule-sets from the Snort IPS. The Snort24, Snort31, and Snort34 rule-sets were taken from [32]. The Snort135 rule-set was extracted from Snort’s "web-client.rules" (February 2014). These rules relate to Web traffic. Table II summarizes the basic characteristics of the rule-sets used in the experiments.

A. Data Set

The data set contains 2301 compressed HTML pages, downloaded from 500 popular sites taken from the Alexa Website [33]. The data size is 358MB in uncompressed form and 61.2MB in compressed form. Since the algorithm is based on repeated byte sequences, it may only perform as well as the compression ratio of the input data and is therefore mainly aimed at highly-compressible inputs such as text.

B. ARCH performance

We compare ARCH with a baseline algorithm, which uses the same underlying automaton scheme (NFA or DFA) without performing any byte skipping. We define \(R_e \) as the scanned character skip ratio — the ratio of characters skipped using ARCH out of the total size of the input data. We define \(R_t \) as the saved scan time ratio — ARCH’s running time compared to the baseline algorithm’s running time.

ARCH-NFA was implemented using active states NFA as its baseline algorithm, as described in Section V. Table III shows statistics regarding its performance. The average skip rate \(R_e \) is 77.99%, which results in a significant performance improvement \(R_t \) of 77.21%. Compared to the overall performance, the overhead of ARCH-NFA is less than 1%. The overall processing time of ARCH-NFA is relatively slow compared to the DFA based implementations (40 times longer) and is therefore less preferred. On the other hand, the space

![Fig. 6. Data structures used for the positive/negative transition marking for pattern set: \{ab+c+d, bc+e\}.](image)

![Fig. 7. Illustration of the Hybrid ARCH-DFA System architecture.](image)

![Transition table](image)

<table>
<thead>
<tr>
<th>Rule Set</th>
<th>Snort24</th>
<th>Snort31</th>
<th>Snort34</th>
<th>Snort135</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Rules</td>
<td>24</td>
<td>31</td>
<td>34</td>
<td>135</td>
</tr>
<tr>
<td>% Rules with Kleene Closure</td>
<td>37.5</td>
<td>41.9</td>
<td>38.2</td>
<td>89.6</td>
</tr>
<tr>
<td>% Rules with Char Ranges (\geq 50)</td>
<td>50</td>
<td>48.4</td>
<td>41.1</td>
<td>51.9</td>
</tr>
</tbody>
</table>
requirements of ARCH-NFA are 18 times smaller than those of ARCH-DFA. The Snort135 rule-set was not tested with ARCH-NFA due to the fundamental state explosion problem of NFA based algorithms. This paper does not aim to solve the low performance of NFA based algorithms, instead it aims to show that the ARCH algorithm fits and may be used by both approaches.

ARCH-DFA was implemented using *A-DFA* [10] as its baseline compression algorithm. The implementation performs *Input-Depth* estimation based on simple and complex states as described in Section VI-A. This estimation has a low overhead while the benefit gained by the more precise estimation of the positive/negative transitions is not significant on our data sets. We implemented two system setups for ARCH-DFA. The first uses a single *DFA* for the entire rule-set and is therefore useful for pattern sets with moderate size, which do not exhibit state explosion. Table III shows statistics regarding the performance of ARCH-DFA. ARCH-DFA achieved an average skip rate R_s of 77.69% and a performance boost R_t of 69.19%. In this case the overhead is more notable and is almost 11%. As discussed in Section VII, this is mainly due to additional memory references to the *Status-Vector* as compared to the baseline algorithm.

The second setup uses a hybrid design consisting of a prefix ARCH-DFA, which encodes the prefixes of the pattern set, and multiple tail ARCH-DFAs as described in Section VII. This setup is useful for pattern sets with considerable size and high complexity, which cause state-space explosion (e.g. Snort135). The average skip ratio R_s is 77.88% while the average gained performance boost R_t is 69.41%. The overhead in this case is also 11%. We note that since the performance improvement of the algorithm depends on the properties of both the input string and the regular expressions in the pattern set, the method may offer a lower performance gain when detecting patterns that contain a short string prefix followed by Kleen Closure.

<table>
<thead>
<tr>
<th>TABLE III. ARCH PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule Set</td>
</tr>
<tr>
<td>NFA</td>
</tr>
<tr>
<td>Time Saved</td>
</tr>
<tr>
<td>DFA</td>
</tr>
<tr>
<td>Time Saved</td>
</tr>
<tr>
<td>Number of Matches</td>
</tr>
<tr>
<td>Run-time NFA/DFA</td>
</tr>
</tbody>
</table>

Fig. 8. Input Depth Cumulative Distribution (NFA)

Fig. 9. Input Depth Cumulative Distribution (DFA)

IX. CONCLUSION

ARCH started as an effort to adapt prior art of string matching over compressed traffic to the regular expression matching domain. Along this process we uncovered a wide set of complexities of both algorithmic and architectural aspects that the new domain holds. We aimed at providing a generic method that fits a wide range of solutions, therefore we analyzed both NFA and DFA setups and aimed at either moderate simple pattern sets and large complex ones. Three architectures are proposed: ARCH-NFA, ARCH-DFA and the hybrid ARCH-DFA.

An important product of this research is the discovery of the *Input-Depth* parameter. Beside the fact that it is a crucial construct for regular expression matching over compressed traffic, we found that there are other applications for which it is important. A surprising fact is that there is no straightforward method to extract the string that relates to a matched pattern without rescanning the packet. The only information about the input that is available at this point is the position in the input in which the match occurred. *Input-Depth* allows this functionality as it indicates the number of bytes that should be extracted from the input up to the match position.

A related application may be to determine the number of bytes that should be stored to handle cross-packet DPI. Instead of buffering entire packets, a DPI engine may just store a matched pattern-prefix at each packet’s suffix. This application has even more benefit in the case of out-of-order packets, where in order to be able to retrieve a matched string several packets should be buffered.

ACKNOWLEDGMENT

This work was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no 259085. Becchi was supported through National Science Foundation award CNS-1319748.

REFERENCES

APPENDIX

Proof: We will prove Claim VI-A by induction, showing that it holds for each NFA construction step. Recall that each such step takes an operator and one or two operands and constructs an NFA part.

Induction base: The first NFA construction step may take as operand a single character. This expression by definition contains no complex states. The first operator may be either a Kleen closure or concatenation with an empty expression. The former case results in marking all states as complex, thus the above claim still holds. The latter case constructs a simple state. Still, since this state represents a string of length 1, the above claim also holds. An alternation requires two expressions thus it cannot be used at the first construction step. Therefore the induction base holds.

Induction step: Assume that the above claim holds for k construction steps. We prove for the $k + 1$ construction step. Assume on the contrary that there is a state s, marked as simple, which after construction step $k + 1$ has two input strings of different length that upon scan from s_0 terminate at s. Let s be part of expression S. We now inspect each operator. For a Kleen closure over expression S all its states would have been marked as complex. Since s is simple, this is a contradiction. For a concatenation of expression S to R, assuming there are at least two input strings with different length that lead to s, then r, the last state of R must have also at least two such input strings. In this case r should have been marked as complex prior step $k + 1$. Thus, tall states of S including s should have been marked complex at step $k + 1$, which again is a contradiction. The only option left is the alternation operator. Note that this operator does not change marks for states inside the operand expressions, rather it creates two additional states prior and after the expressions. Thus our assumption could take place only if s is a newly created state at step $k + 1$. The new state before the expression accepts only an empty string, which is not the case for s. Therefore, s must have been the new state after the expressions. Since s is simple, both expressions’ last state must be simple. The only case where two input strings with different lengths could have reach s from s_0 is if both expressions represent a string with different length. But in this case s would have been marked as complex, which is again a contradiction. Thus the claim holds for $k + 1$ and the proof of the induction is complete.