

The Interdisciplinary Center, Herzliya
Efi Arazi School of Computer Science

M.Sc. program

GRAMI Software

Enhancement on

SDN Networks

by

Shlomi Nissim

Final project, submitted in partial fulfillment of the requirements

for the M.Sc. degree, School of Computer Science

The Interdisciplinary Center, Herzliya

January 2018

1

Acknowledgments

This work was carried out under the supervision of Prof. Anat Bremler-Bar from Efi

Arazi School of Computer Science, the Interdisciplinary Center, Herzliya. I want to thank

her for giving me the opportunity to work on such an interesting project, and the help to

face the challenges I have encountered along the way.

I would also like to thank Mr. Alon Atari for his explanations and advices that were

crucial for the success of this project.

2

Abstract

GRAMI, the Granular RTT Monitoring Infrastructure tackles the problem of monitoring

round trip time and uses the ability of OpenFlow to control the routing. GRAMI, that was

presented in [1] uses active probing from selected vantage points for efficient RTT

monitoring of all the links and any round-trip path between any two switches in the

network.

The previous implementation of GRAMI had couple of limitations, GRAMI was

implemented on CPqD switch, a virtual switch that is not commonly used in the industry

and GRAMI experiments ran on a simulated environment without comparing them to a

real RTT measurement tool.

 In this work, we first implemented GRAMI on the commonly used OpenVSwitch, which

required us to do some adaptation of the original GRAMI algorithm. In addition, we

implemented also round trip (RTP) measurement, in OpenVSwitch, that measures RTT

between any two switches in the network. In the original paper RTP was designed but not

implemented. GRAMI updated source code can be found in [2].

 As second step in this work, GRAMI algorithm accuracy was confirmed by running

several experiments in a real SDN network. The RTT results were compared with

traceroute. Traceroute, is a common diagnostic tool for RTT monitoring for IP network,

but it suffers from limitations, such that it can measure only some of the paths in the

network, and only in IP level. This is as opposed to GRAMI that can measure any path in

the network, and also works on L2 SDN network. The comparison to traceroute, in the

scenario that traceroute can measured, shows that the results are very similar with

deviation of maximum 0.1 milliseconds from the traceroute result.

3

Table of Contents

Acknowledgments... 1

Abstract ... 2

Table of Contents .. 3

List of Figures ... 4

1 Introduction .. 5

2 Background .. 7

2.1 GRAMI Overview .. 7

2.2 GRAMI support on virtual switches ... 8

2.3 Previous software-defined network setup ... 10

2.4 RTP measurements ... 11

3 Implementation .. 12

3.1. OpenVSwitch Integration .. 12

3.1.1 Choosing tagging mechanism for GRAMI .. 12

3.1.2 GRAMI code modifications .. 13

3.2 Round trip path (RTP) .. 14

4 Evaluation .. 16

4.1 Mininet with OpenVSwitch setup ... 16

4.2 Using "traceroute" for comparison ... 18

4.3 Separate virtual machines setup .. 19

4.3.1 GRAMI vs. Traceroute without network load ... 21

4.3.2 GRAMI vs. Traceroute with network load .. 21

4.3.3 GRAMI vs. Traceroute overtime ... 22

4.4 Separate servers network setup ... 23

5 Summary and Conclusions .. 26

References ... 27

 28 .. תקציר

 29 ... תודות

4

List of Figures

Figure 1: Running GRAMI on OpenVSwitch on Mininet ... 17

Figure 2: Running GRAMI on multiple virtual machines without load 20

Figure 3: Running GRAMI on multiple virtual machines with a file transfer.................. 20

Figure 4: GRAMI vs Traceroute - without any load... 21

Figure 5: GRAMI vs Traceroute – with network load .. 22

Figure 6:GRAMI vs Traceroute – over time ... 22

Figure 7: GRAMI network setup on a real physical network ... 23

Figure 8: GRAMI vs Traceroute – running on separate hardware. 25

5

1 Introduction

Monitoring Round-Trip Time provides important insights for network troubleshooting

and traffic engineering. The common monitoring technique is to actively send probe

packets from selected vantage points (hosts or middleboxes). In traditional networks, the

control over the network routing is limited, making it impossible to watch every selected

path. The emerging concept of Software Defined Networking simplifies network control.

However, OpenFlow, the common SDN protocol, does not support RTT monitoring as

part of its specification.

GRAMI was designed to be resource efficient. It requires only four flow entries installed

on every switch to enable RTT monitoring of all the links. For every round-trip path

selected by the user, it requires a maximum of two additional flow entries installed on

every switch along the measured path. Moreover, GRAMI uses a minimal number of

probe packets, and does not require the involvement of the controller during online RTT

monitoring.

One of the GRAMI implementation limitation in the original paper was that algorithm

tested and implemented on a network emulated with Mininet [3] and based on CPqD

OpenFlow [4] virtual switches controlled by a single Ryu controller [5]. But, this way of

implementation had a major drawback, GRAMI could not run on a real SDN network, so

all the results were simulated by one local machine.

Since the original paper GRAMI was implemented on CPqD virtual switches, and this

virtual switch implementation is no longer supported, and is not popular among the SDN

6

users. SDN common users did not want to change their network to contain unsupported

and old-fashioned virtual switches such as CPqD.

In this paper, we implemented GRAMI on OpenVSwitch, the most popular virtual switch

software today makes it easier to integrate with GRAMI on existing networks that

commonly used OpenVSwitch switches. GRAMI is tested in an environment that

contains OpenVSwitch virtual switch with version was updated and now its supports

QinQ, appending two VLAN headers, that was required in GRAMI for tagging data in

the probe packets. This version was released in March 2017. Now, the source code was

changed for fully support OpenVSwitch.

Moreover, the ability to calculate RTP was added, which is not available in other

common RTT calculation tools. RTP was suggested in the previous article and was not

implemented, but now RTP support added and tested successfully.

In the evaluation phase, we verify that GRAMI is a reliable tool for testing RTT between

links on a real software-defined network. We created many network setups to examine

various types of links: a virtual link within Mininet, a link between two separate VMs and

a physical link between two separate servers. This selection of links simulates all the

scenarios which a software-defined network can run. To ensure the reliability of GRAMI,

we compared the experiment results to another RTT common diagnostic tool, traceroute.

GRAMI successfully identified the loads and returned similar results to traceroute (by

deviation of 0.1 milliseconds).

7

2 Background

2.1 GRAMI Overview

The previous paper presented GRAMI, the Granular RTT Monitoring Infrastructure.

GRAMI uses active probing from selected vantage points for efficient RTT monitoring of

all the links and any round-trip path between any two virtual switches in a software

defined network. Then, it ran on a network emulated with Mininet and based on CPqD

OpenFlow virtual switches.

In a classic SDN scenario, rules for packet handling are sent to the switch from a

controller, an application running on a server somewhere, and switches (aka data plane

devices) query the controller for guidance as needed, and provide it with information

about traffic they are handling. Controllers and switches communicate via a controller's

"south bound" interface, usually OpenFlow, although other protocols exist. OpenFlow

does not support RTT monitoring as part of its specification. We use GRAMI for adding

support of RTT monitoring using the OpenFlow protocol.

GRAMI was designed to be resource efficient. It requires only four flow entries installed

on every switch in order to enable RTT monitoring of all the links. For every round-trip

path selected by the user, it requires a maximum of two additional flow entries installed

on every switch along the measured path. Moreover, GRAMI uses a minimal number of

probe packets, and does not require the involvement of the controller during online RTT

monitoring

GRAMI is composed of two phases, an offline phase and an online phase. In the offline

phase, an application installed on the controller builds a single overlay network and

installs its corresponding flow entries, which define the routing for the probe packets.

8

The overlay network enables monitoring of all the links in the network and all the RTPs

selected by the user.

In the online phase the measurement points (MPs) repeatedly send probe packets. The

probe packets are distributed over the overlay network to every switch. Along the way,

the switches use tagging in order to identify the path traversed by each probe packet and

the path it should traverse. Each switch sends the probe packet in return to the MPs.

These packets contain two adjacent virtual switches identifiers. The MPs extract the path

from the tagged data and by computing the receive time difference these packets, the

links RTT time is calculated.

In the original paper, GRAMI code was ran on RYU SDN Framework. The application

selects unique IDs for the selected RTPs, unique IDs for the switches, and a NULL ID to

indicate an empty ID value. Note that probe packets with RTP information contain two

IDs; the RTP ID and the first switch ID. Probe packets with link information contain two

IDs as well; those of the switches at the link’s endpoints. Thus, GRAMI uses two fields

of IDs; (ID1; ID2), to enable tagging of RTPs or links according to the RTPFlag. Since

the probe packets are created in the MPs and used only for RTT monitoring, they can be

independent for a specific protocol. Therefore, GRAMI can add any payload, and select

any field for tagging, if the OpenFlow version supports tagging and matching for that

field.

2.2 GRAMI support on virtual switches

Virtual switch is a software layer that resides in a server that is hosting virtual machines

(VMs). VMs, and now also containers, such as Docker, have logical or virtual Ethernet

ports. These logical ports connect to a virtual switch.

There are three popular virtual switches: VMware virtual switch (standard & distributed),

Cisco Nexus 1000V, and OpenVSwitch (OVS). OVS was intended to meet the needs of

9

the open source community, since there was no a feature-rich virtual switch offering

designed for Linux-based hypervisors. OpenVSwitch is meant to be controlled and

managed by third party controllers and managers. OVS is critical to many SDN

deployments in data centers because it ties together all the virtual machines (VMs) within

a hypervisor instance on a server. In the previous article, the implementation did not

support OVS, to get GRAMI evaluation be real as possible, GRAMI integration with

OVS is a main task of this project.

For running GRAMI on a real SDN network, GRAMI source code needs to be changed to

support OpenVSwitch tool. OpenVSwitch is the most popular implementation of virtual

switches, have stable releases and update support. Afterwards, running GRAMI on a real

SDN network is a simple task because OpenVSwitch is wildly supported in the industry.

Also, companies and research institutes could use GRAMI algorithm as well. To sum up,

enhancing GRAMI to work on OpenVSwitch, cause it to be a flexible and compatible

tool for computing RTT between virtual switches.

The probe packets tagging fields were ethernetType (16 bits) and two VLAN IDs (12 bits

each). IEEE 802.1ad (QinQ tunneling) [6] is ethernet networking technique to tag two or

more VLAN headers in packets. OpenVSwitch did not support QinQ, therefore the

previous work cannot use two VLAN headers and is not compatible for implementation

on this kind of virtual switch. Moreover, the. The DirectionFlag and the SetIDFlag were

encoded by four different ethernetType values that are not correlated with any protocol.

The ParentFlag, RTPFlag and ID1 were encoded in one VLAN header. ID2 was encoded

in the other VLAN. In ID1, 10 bits were used for switch ID or the NULL ID. In ID2, 12

bits for switch ID, RTP ID or the NULL ID. Hence, GRAMI implementation is limited to

(2^10-1) = 1023 switches and (2^12-1) = 4095 RTPs, but choosing other fields for

tagging is possible for bigger networks.

10

2.3 Previous software-defined network setup

Software-defined networking (SDN) is a term encompassing several kinds of network

technology aimed at making the network as agile and flexible as the virtualized server

and storage infrastructure of the modern data center. The goal of SDN is to allow network

engineers and administrators to respond quickly to changing business requirements. In a

software-defined network, a network administrator can control the traffic forwarding,

from a centralized control console without having to touch individual switches and can

deliver services to wherever they are needed in the network, without regard to what

specific devices a server or other device is connected to.

Mininet is a network emulator which creates a network of virtual hosts, switches,

controllers, and links. Mininet hosts run standard Linux network software, and its

switches support OpenFlow for highly flexible custom routing and Software-Defined

Networking.

Unlike a simulator, Mininet doesn’t have a strong notion of virtual time; this means that

timing measurements are based on real time, and that faster than real time results (e.g.

100 Gbps networks) cannot easily be emulated. In the previous paper, GRAMI tests were

running on Mininet. Hence, all the virtual switches and links were implemented on a

single machine with shared computational resources. The final results were simulated as

well and did not demonstrate RTT of a real SDN network.

One this project tasks is to run some tests on real software-defined network. The last

work ran on Mininet and the tests were run on one single virtual machine with shared

computational resources. Mininet is a virtual environment not suitable for measuring time

or performance accurately. However, it was a proof of concept and gave us a sense on the

impact of different network parameters. In the previous article, we tried to estimate

11

GRAMI’s overhead in Mininet followed by an assessment of how different network

parameters might affect the accuracy of the RTT measurements.

2.4 RTP measurements

Round trip path (RTP) time between any two switches in the network was not

implemented in the previous work. One of GRAMI features is to calculate packet

preconfigured RTP time, the algorithm is described in the article. This task provides

important insights for network troubleshooting.

When a probe packet is received at a switch, it triggers the measurement of every egress

link of s according to the overlay network, and of all the preconfigured RTPs that start at

that switch. The RTP algorithm in GRAMI is well explained in the previous article. This

is a programming task, by adding this feature, GRAMI algorithm have a great advantage

compared to other algorithms and tools that do not contain this feature.

12

3 Implementation

3.1. OpenVSwitch Integration

One of the project tasks is to find a way to implement GRAMI on OpenVSwitch.

OpenVSwitch did not support QinQ tagging, although that RYU controller is already

supports it. First, we will describe the number of dilemmas to overcome it. Then we will

explain what adaptation in the algorithm code we made for this integration.

3.1.1 Choosing tagging mechanism for GRAMI

We consider the following options for tagging in GRAMI:

A. Using different packet fields for tagging GRAMI data

We consider replacing other fields in the probe packet that OpenFlow supports. In that

way, the computation overhead time for pushing and popping VLAN headers will be

saved and we will use minimal bytes in our probe packets. We proposed that we use in

the ethernetType for GRAMI protocol flags, sourceMAC for the first switch ID and

destinationMAC for the second switch ID. This way is much faster and can support many

more switches. The disadvantage of using MAC fields for tagging is possible collision of

MAC addresses that might cause network malfunction. Another disadvantage that is that

there is no history or research justification for using these fields for tagging data.

Later, we found an article, that uses tagging data in the sourceMAC address [7]. Since

MAC address has enough bits (6 bytes= 6*8 bits), it can contain all GRAMI data (30

bits).

We used to tag in parts of MAC header for implementing GRAMI on OpenVSwitch. We

found that, In the latest version of OpenFlow 1.5[8] supports the OpenFlow "set partial

field" action. RYU and OpenVSwitch supports this feature. The problem was, that

OpenVSwitch does not implement OFPPacketOut action (the controller supposed to use

13

this message to send a packet out through the switch, which is critical for virtual switch

functionality) for OpenFlow 1.5. The outcome was that we cannot use this way of

implementation.

B. Using P4 switch instead of OpenVSwitch

Another option is using P4, in the P4 language (also referred as” OpenFlow 2.0 API”)

[9], the user can define specific headers for tagging, and only set these headers to tag the

packet. Implementing GRAMI with the P4 language should thus significantly reduce the

overhead caused by the tagging mechanism. The problem is P4 not popular enough

because it is uneasy to install on virtual switches.

C. Patching OpenVSwitch source code.

The final option and the most difficulty one way to patching OpenVSwitch source code

to support QinQ tagging. Because OpenVSwitch is an open source project, after some

research, we found mail discussion about developing QinQ tunneling support, they said

that the first patch stable release was available in the beginning of 2017 [10], in March

2017 the patch was released. The integration was successful and GRAMI run in

OpenVSwitch so that option was chosen.

3.1.2 GRAMI code modifications

After months of reading mail discussions, the support patch for QinQ was committed to

OpenVSwitch GitHub. GRAMI uses the VLAN headers for saving two VLAN IDs,

OpenVSwitch did not support double-tagging of VLAN headers - QinQ. We used this

new version of OpenVSwitch under Mininet because the setup was under the same

machine and it was easier to debug problems. The virtual switch could push two VLAN

headers, which has not been possible in OpenVSwitch until now. Clearly, this was a

breakthrough for the project.

14

Moreover, one of the OpenVSwitch integration problems was that run

OFPActionSetField on the ethernetType field was not allowed, it was used to specify the

probe packet type. By looking at the OpenVSwitch source code, it was confirmed that

this field was blocked for changes. Previously, this field GRAMI's usage was to specify

the direction and type of probe packet, so this field is necessary field to make GRAMI

work.

One of the possible solutions was to use the VLAN's priority field. This field has been

unused in the implementation of GRAMI until now. It is not commonly used for

specifying the packet type. Eventually, we ran a few tests and the result was that the

Linux driver was resetting this field, therefore we lose the type of the probe packet, so to

sum up this field cannot be used.

At last, we found an article which uses sourceMac field for saving the protocol type. This

field can be used because GRAMI uses Layer 2 only, and this field is unused too. The

controller can decide to modify existing flow rules on one or more switches or add new

rules, hence the virtual switches routing is determined by the controller. Accordingly, we

use this field for specifying the probe packet type and direction.

As a result, GRAMI now can route packets by using sourceMac field. There are 4 types

of probe packets, which means 4 MACs, so the chance of MAC collision is negligible.

Furthermore, we are able to distinguish between regular packets and GRAMI packets

more easily.

3.2 Round trip path (RTP)

First, for the RTP implementation, we use the algorithm that was suggested in the

GRAMI article. The algorithm describes how to apply flaw rules for measuring RTP on

the virtual switches. We assign to each RTP an ID, so it can match the packet RTP flaw

rule according to the ID. When a probe packet arrives to a switch, and RTP starts in that

15

switch, it sends additional packet in the RTP path with RTPType, the switch passes the

packet according to ID matching rules in the network topology according to the

predefined route. Eventually, the RTP probe packet returns to the virtual switch that the

path was started, the type becomes ReturnNoTag and the packet returns to the

measurement point. By calculating the difference between the switch RTT and the time

that the RTP packet arrives to the MP, we get the RTP time.

In addition, we add a feature that the MP could add RTP by sending a packet to the

controller. Moreover, The MP can process and parse the RTP packets that arrives. Now,

the RTP calculation results are simply shown in the MPs. In conclusion, after several

tests we approve that the implementation worked, and we successfully added RTP time

calculation support to GRAMI.

16

4 Evaluation

GRAMI was tested on some various software defined networks, in every setup the virtual

switches were OpenVSwitch. The first setup is installing Mininet on a single virtual

machine, the second is a couple virtual machines on a personal computer and the third

one is by using separate physical servers.

In all setups, each machine that used run Ubuntu Server. OpenVSwitch software is

installed on these endpoints. The links between the machines are emulated by internal

virtual networks between the VMs or a ethernet cable. In addition, there are two hosts

that create load on the switches for the tests. One machine for the controller and one for

the measurement point. The main limitation using a single virtual machine is that heavy

load on the single CPU created, which corrupt the test results.

Furthermore, Deepness Lab [11] servers used for the testing. By using this configuration,

we receive fast and reliable results. However, there are not so many available Ethernet

ports on these servers and only one switch is connecting between them. For GRAMI

virtual switches link RTT measuring we must have at least two virtual switches. As a

result, we configure the network and connect the servers physically.

4.1 Mininet with OpenVSwitch setup

After the integration with OpenVSwitch worked, the setup workspace had been

upgraded, the operating system upgraded to Ubuntu 16.04, and we upgrade to

OpenVSwitch 2.7.9 and to Mininet 2.3.0 which support the features that implemented.

By using Mininet, it was easy to set up a network topology for tests. We choose the

network topology from GRAMI presentation (figure 1), the advantages of this network

topology are that it challenges the GRAMI algorithm. We added 10ms delay before

17

sending any packet in each switch port also added, in order to get results that could be

verified.

Figure 1: Running GRAMI on OpenVSwitch on Mininet

Finally, GRAMI ran on this topology. The result was that GRAMI supports

OpenVSwitch under the Mininet virtual environment. The pre-configured RTP worked

and returned reasonable results and the links RTT were calculated correctly as well. We

received a significant overhead of 4ms in each link, in addition to the delay we added.

This occurred because we ran under one machine with one processor, by tagging VLAN

data and the processing time of the packets in the switches, the overhead increases due to

the virtual processor load. The next step is to run GRAMI not in Mininet environment

where we can get more reliable results.

18

4.2 Using "traceroute" for comparison

Traceroute is a computer network diagnostic tool for displaying the route (path) and

measuring transit delays of packets across an Internet Protocol (IP) network. The history

of the route is recorded as the round-trip times of the packets received from each

successive host (remote node) in the route (path). The sum of the mean times in each hop

is a measure of the total time spent to establish the connection. Traceroute proceeds

unless all (three) sent packets are lost more than twice, then the connection is lost, and the

route cannot be evaluated. Ping, on the other hand, only computes the final round-trip

times from the destination point.

Moreover, OpenFlow switches do not have an IP address in their datapath. As a result,

tools like Ping and Traceroute are not suitable for monitoring paths between two switches

in the network. GRAMI measures the round-trip time between virtual switches. We need

a network diagnostic tool to compare with GRAMI, and it seems that traceroute might do

the work.

This tool should have the ability to calculate RTT between virtual switches. Since there is

no public tool that calculates links RTT between virtual switches in SDN, we chose to

use traceroute, which is commonly used to measure RTT. The disadvantage of this tool is

that it is running on routers instead of virtual switches. In hence, at the same setup of tests

we used, the endpoints are routers instead of switches, with the identical link conditions.

Traceroute tracks the route packets taken from an IP network on their way to a given

host. It utilizes the IP protocol's time to live (TTL) field and attempts to elicit an ICMP

TIME_EXCEEDED response from each endpoint along the path to the host. We get link

RTT between endpoints by subtracting adjacent endpoint RTT.

The change to routers has forced us to migrate routing rules using the route command.

Each endpoint port (NIC) has IP configured with its own subnet. For two linked

19

endpoints, we set different IPs but the same subnet, so they can communicate with each

other. For two unlinked points, some routing manual packet forward rules was defined.

Therefore, the router knows how to send the packet in a port that would reach its

destination, just like a real Internet network. Furthermore, we succeed to do it by

applying the IP forwarding option at the endpoints linux machines.

4.3 Separate virtual machines setup

We created multiple virtual (VM) machines in a personal computer using VMware

software, the VMs are running Ubuntu Server 16.04.2 and OpenVSwitch v2.7.90, these

are the most updated versions of the date of the tests. The links between the machines are

configured by network adapters that are on the same virtual network.

The network contains the following Components: four switches: S1, S2, S3 and S4. Each

switch run on separate VM, a controller and a MP. The controller and the other switches

are connected to the management network. The network links are described in the results

figure.

We had a couple of difficulties during the network creation. First, was running 6 VMs on

a personal computer. The solution was by using Ubuntu Server on a virtual machine with

minimum requirements, with four processors computer was enough. Second, the

operating system, Ubuntu, by default doesn't support VLAN headers, so we added VLAN

support by using 8021q kernel built-in module. We created multiple internal networks to

simulate internal links in the host operating system. Moreover, we implement the

automation to run multiple tests on multiple VMs, so we can run our tests more easily.

We ran two tests; the first test was without load on the network, and the other was with

load. The results that are shown in figure 2 and 3, were the average between 100

measurement rounds, with one second delay between them. The load caused by file

transferring between hosts h1 to h2, with maximum speed.

20

Figure 2: Running GRAMI on multiple virtual machines without load

Figure 3: Running GRAMI on multiple virtual machines with a file transfer

The main achievement was that GRAMI works on a real network. GRAMI overhead is

much lower on a real network than running on a single machine with Mininet.

Furthermore, GRAMI algorithm does not damage the network bandwidth rates because

21

GRAMI send a little quantity of packets per second. Although the network load, the link

RTT results stayed the same, because GRAMI packet flaw rules have higher priority.

4.3.1 GRAMI vs. Traceroute without network load

The tests purpose was to validate GRAMI virtual switches RTT results versus traceroute.

Each test ran on virtual switches and calculated by GRAMI, then ran on routers using

traceroute. The tests ran on the same VMs with the same conditions. We add 10ms delay

between the endpoints for more stable results. If we did not do it, the result was unstable

because of packet queuing and as a result some of the probe packets received in the same

time. The test results are shown in figure 4.

Figure 4: GRAMI vs Traceroute - without any load

4.3.2 GRAMI vs. Traceroute with network load

After some research, we understand that simulating the heavy load on links is possible by

setting a bandwidth limit on the network interfaces. When we use VM configuration to

limit the NIC bandwidth, then we see that the RTT time was increased significantly by

simulating heavy traffic. Network load was simulated by transferring a file, at our

network setup, the link bandwidth between s2 to s3 was configured to 1Mb/s. From

figure 5 we can se that GRAMI identify the results successfully as traceroute.

6.0 ms

7.0 ms

8.0 ms

9.0 ms

10.0 ms

11.0 ms

12.0 ms

Link 1-2Link 2-3Link 3-4Link 1-3

GRAMI vs Traceroute - without any load

GRAMI Traceroute

22

Figure 5: GRAMI vs Traceroute – with network load

4.3.3 GRAMI vs. Traceroute overtime

In this test, we sent a probe packet every second for 100 seconds and focused on a single

link. At the middle of the test, we added a network load. The goal was that GRAMI could

identify changes over time. Afterwards, we ran this test with traceroute with the same

conditions and timing. The conclusion from figure 6 is that GRAMI and traceroute have

indeed identified the change in load at the appropriate time. We see that GRAMI is faster

than traceroute. The explanation for that is that traceroute works in IP layer which require

much more work from the CPU than GRAMI, that works with simple packets by known

route in the second layer.

Figure 6:GRAMI vs Traceroute – over time

5.0 ms

500.0 ms

Link 1-2Link 2-3Link 3-4

GRAMI vs Traceroute - with network load

GRAMI Traceroute

10.0 ms

50.0 ms

250.0 ms

16

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

GRAMI vs Traceroute - over time

GRAMI Traceroute

23

4.4 Separate servers network setup

We ran the tests on Deepness Lab servers. In the lab setup, there are three serves

connected to each other by 10G optical cables. In addition, all the servers in the lab are

connected to a management network, so they can be remote controlled by the Internet.

There is an additional server that is not connected to any other server, but it is connected

to the management computer too. We need to use this network setup to create the SDN

topology with a controller, so we can run GRAMI tests on it. Figure 7 describes

Deepness Lab Network Scheme. The challenges would be described at following section.

Figure 7: GRAMI network setup on a real physical network

1. The virtual switches and the controller placement.

There are three servers connected by 10G optical cable to each other. Within each server,

we installed OpenVSwitch. Two of the network adapters of the server configured as ports

of the switch. These ports are connected to the ports of the remaining switches. The

advantage of this setup is that we can also measure RTP between these three switches.

24

The management network is on the same subnet, so we can use the fourth computer as

RYU controller by using TCP connections for distribute forwarding rules to the switches.

In conclusion, the controller and a virtual switch are installed in separate hardware which

is the purpose of this test.

2. There are not enough computers to create MP.

We created a virtual link in one of the servers, the link connected to the virtual switch and

the other end used to monitor GRAMI's management packets. In this scenario, the switch

and the measurement point run on the same hardware, but that link is not relevant to our

calculations, because only the RTT between the switches interest us.

3. Generate network load for GRAMI tests.

In the previous setup it was possible to limit the bandwidth of a network card by

configuring the VM and create network load by transferring a file. Now the network

cards are the hardware of the servers, and we can't change their bandwidth limit. We tried

using existing tools such as "tc" or "wondershaper", but these tools only limit the network

connection, and the GRAMI measurement packets is not even IP packets. Therefore, no

matter how much we load the network card, we can't simulate a RTT significant changes.

For test verification, we added 10ms delay on the interfaces.

25

In figure 8 we can see this test results, the test ran on the setups that described in figure 7.

Moreover, RTP calculation time between S1 S2 and S3 virtual switches is: 30.41ms, the

traceroute result for this test, which calculated manually is 30.91ms.

Figure 8: GRAMI vs Traceroute – running on separate hardware.

6.0 ms

7.0 ms

8.0 ms

9.0 ms

10.0 ms

11.0 ms

12.0 ms

Link 1-2Link 2-3Link 1-3

GRAMI vs Traceroute

GRAMI Traceroute

26

5 Summary and Conclusions

In this project, we learned a lot about SDN and its implementation methods. At first, we

set up a Mininet network on a single computer and ran several GRAMI tests on it. Then,

in the same setup, we did an integration with OpenVSwitch so that we could run GRAMI

on more generic networks. At this point, we added support for the RTP calculation that

was not implemented during the previous article. We have uploaded GRAMI updated

source code to GitHub so that anyone who wants can use GRAMI or learn about SDN

implementation method from it.

The main goal was to enhance GRAMI on various network setups. In these tests, we

compared GRAMI to traceroute, one of the most common tools in the networking world,

to verify the accuracy of the results. GRAMI was run on some virtual machines on a

personal computer. In this setup, the loads between links was generated and increased

RTT times. Finally, GRAMI have been tested on a network of servers, each server

running on separate hardware.

There are several conclusions from our work. First, GRAMI works on the various setups

that we have mentioned so far. Second, we verified the test results against traceroute tool

and verified that the results we were getting were indeed reasonable. We succeeded in

generating changes in the network load during the tests, and we verified that GRAMI can

identify these changes. The bottom line, we confirmed that GRAMI does indeed correctly

calculate the RTT links between virtual switches, and that GRAMI is a reliable tool for

performing such tests.

27

References

[1] Alon Atari, Anat Bremler-Barr, "Efficient Round-Trip Time Monitoring in

OpenFlow Networks", in INFOCOM: http://www.deepness-

lab.org/pubs/infocom2016_grami.pdf

[2] GRAMI source code GitHub: https://github.com/alonatari1/GRAMI

[3] Mininet: http://mininet.org/overview/

[4] OpenFlow 1.3 Software Switch by CPqD: http://cpqd.github.io/ofsoftswitch13/

[5] Ryu Controller: https://github.com/osrg/ryu

[6] OpenVSwitch: Overview of 802.1ad (QinQ) Support:

https://developers.redhat.com/blog/2017/06/06/open-vswitch-overview-of-802-

1ad-qinq-support/

[7] Be Fast, Cheap and in Control with SwitchKV by Xiaozhou Li, Raghav Sethi,

Michael Kaminsky, David G. Andersen, Michael J. Freedman :

https://www.usenix.org/node/194905

[8] OpenFlow 1.5 Switch Specification:

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-switch-v1.5.0.noipr.pdf

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C.

Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Programming

protocol-independent packet processors,” ACM SIGCOMM Computer

Communication Review, vol. 44, no. 3, pp. 87–95, 2014

[10] OpenFlow Support in OpenVSwitch:

https://github.com/openvswitch/ovs/blob/master/Documentation/topics/openflow.rst

[11] Deepness Lab Wiki [licensed for non-commercial use only]:

http://deepness.pbworks.com/w/page/84759187/Welcome!

http://deepness.pbworks.com/w/page/84759187/Welcome

28

 תקציר

 ןאתיהמתמודד עם הבעיה של מדידת זמני שליחת חבילות הלוך חזור מרגע יצ אלגוריתםאלגוריתם גראמי, הוא

[עובד בצורה 1כדי לשלוט בחוקי הניתוב של הרשת. גראמי, אשר הוצג ב] OpenFlowמשתמש בה ןעד חזרת

פעילה ברשת, על ידי שליחת חבילות ניטור ממספר נקודות קבועות ברשת למדידה של זמני שליחת חבילה הלוך

 וחזור בין כל שני מתגים ברשת.

, שזה מתג CPqDתו הייתה גראמי מומש על מתג שתוכנ .המימוש הקודם של גראמי היה בעל מספר חסרונות

הבדיקות של גראמי רצו בסביבה מדומה מבלי השוואה לכלי ניטור רשת בנוסף, תוכנתי שלא נפוץ בתעשייה ו

 אחרים.

ושינוי זה הצריך OpenVSwitchגראמי על מתג תוכנתי הנפוץ ביותר, משנו אתיבעבודה זו, בשלב הראשון, מ

לעשות מספר התאמות לאלגוריתם גראמי המקורי. בנוסף, הוספנו מימוש לחישוב זמן של דרך מוגדרת מאתנו

בעבודה ברשת. במאמר המקורי, האלגוריתם לכך נכתב םתוכניתיימראש ברשת, המודד זמן בין כל שני מתגים

 [.2אך לא מומש. קוד המקור המעודכן נמצא ב]הקודמת

נכונות של אלגוריתם גראמי על ידי הרצת מספר ניסויים במספר רשתות ו את הוכחנבשלב השני של העבודה, ה

 IP, כלי הנפוץ לשם ניטור רשתות tracerouteלכלי אחר, הושוו שהתקבלו, . התוצאות שונותמבוססות תוכנה

מתגים בין כל זוג ן מרגע שליחת חבילה עד לחזרתה יכול למדוד זמ, שזהו כלי הבלבד. בניגוד לגראמי

ההשוואה לכלי אחר, בתרחיש בו אנו .ההשנייבשכבת הרשת הנשלחות על ידי חבילות ברשתטואליים ויר

 מילישניות בין שתי הבדיקות. 0.1היו זהות ובסטייה של עד גראמיהתוצאות של שהוכיחה יכולים להשתמש בו,

29

 תודות

מבי"ס אפי ארזי למדעי המחשב, המרכז הבינתחומי, בר-ענת ברמלרעבודה זו בוצעה בהדרכתו של פרופ'

תרמה מאוד על הפרויקט זה, הנחייתה שהסכימה לעבוד איתי בהזדמנות זו, אני רוצה להודות לה הרצליה.

 נתקלתי לאורך הדרך.שאתגרים ב ותהתמודדועם להכנת הפרויקט

על בר את המאמר הקודם בנושא,-, שכתב יחד עם פרופ' ענת ברמלרבנוסף, אני רוצה להודות לאלון אטרי

 הסבלנות והעזרה שלו לאורך כל הפרויקט.

30

 המרכז הבינתחומי בהרצליה
ספר אפי ארזי למדעי המחשב-בית

 (.M.Scהתכנית לתואר שני)

גראמי של הרחבת התוכנה

 מבוססת תוכנה ותרשת על

 מאת

 שלומי ניסים

 ,.M.Scק מהדרישות לשם קבלת תואר מוסמך כחל פרויקט גמר, מוגש

 הרצליה זי למדעי המחשב, המרכז הבינתחומיבית ספר אפי אר

2018ינואר

